35. *Catenes, 35. *Cholula, 19, 35. *Cligenes, 35. Cymus, $3+$ *Davila, 35. *Dorachosa, 36. *Enciscoa, 34. Eremocoris. zo, 35. Erlacda, 35. Esuric, 36. Geocoris, ${ }^{17}$, 18. *Gonatas, 2o. Heraeus. tS, 19. Ischodemus, 19, 34. Ischnorhynchus, 19, 34. Ligyrocoris, 17, 18, 19. Lygaeus, 16, 17, 18, 3ł. *Mayana, 34 . Myodocha. 17, 19. *Neocattarus, 19, 20, 35 *Neoninus, 19. *Nicue $2, ~ 3+$. Ninus, 19. *Ninyas, 19. 34. Nysius, 3f. Oncopeltus. 16, 17. Pachygrontha, 17, 34. Parema, 17, 19. Peliopetta, 36. Pephysena, iS, zo. *Perigenes, 34. *letinsius, 35. Plociomera, 17, 19, 35. *Prytane, 35 *Pseudopamera, 20, 35. Rhaptus, 36. Rhyparochromus, 19° Salacia, 35. *Scythinu-, 35. *Sisammes, 35 *Toonglasa, 34 Trapezonotus, 20. *Traреzия, zo.
Pyrrocoridue. Arhaphe. 21. Dysderus, 21. Fibrenus, 20. 21. Japetus, 21. Largus, 20. *Phaeax, 36. Pyrrhocoris, z1. *Renodaens, 39. Stenomacra, 2o. Theraneis, 21. 22.

Capsidue.- *Admetus, 25. *Annona, 26, 27, 39. *Antias, 29. *Auchus, 39. *Bibaculus, 28. Calocoris, 22, 23, 25, 37. *Calocorisca, 26, 27, 38. *Calondas. 23, 26. *Carmelus, 28, 38, 39. *Chius, 27. *Cumatlan, 27, 38. Compsocerocoris, 25. 37. Collaria, 24. *Creontiades. 23. Cylapus, 24. 36. Cyrtocapius, 29. *Dermuata. 29, 39. Eccritotarsus, 22. 23.26 .25 .35.
*Eioneus, 36. *Eubatas, 27. *Eurotas, 29. *Falconia, 29. *Ficinus. 39. *Florus, 29. Fulvius, 23. 27. *Fundanius, 28. *Funcus, 29. Garganus, 25, 37. Lladromema, 22. Henicocnemis, 27. Herdonius, 36. *Horcias, 26, 27, 38. *Jacchinus, 37. *Jobertus, 36. *Jornandes, 29. 39. *Lampethusa, 29. Lopider. 23. 37. *Lygdus, 2t, 36. Lỵgus, $23,26,37$. *.Mala, 26. Wegacoelum, 23, 37 . *Minytus, 2- 36. Miris, 23, 36. *Monalo-cori-ca, 28, 38. Monalonion, 23, 24. *Neoborus, $27,3^{8 .}$ *Neocap-us, 22,38 . *Neo. carmus, 29 *Neofurius. 23. 28, 29 *Neoleucon, 26. *Neoproba, 26, 37. *Neosilia, 2\%, 29, 39. Neurocolpus, 23. Ofiellus, 25 . Orausc 23. *Pandama, 26, 37 . *Pappus, 25, 37. *Paracalocoris. 22, 25. 37. *Paracarnus, 28.39. *Parachiu- 27. *Paraproba, 26 *Piasus, 24. *Poeas, 37. Poecilocap ヶun, 22, 23, 26. 27, 37. *Proba, 25, 26. *Pseudobryocoris, 28. *Psendocarnus, 28 . *Ranzorius, 36. Resthenia, 22, 24, 25, 36, 37. *Rhacis, 3S. *Spartacu- 26. *Sysinaa, 23, 24, 25. *Tatedia, 25. *Trygo, 29. *Vannius, 2f. *Kenetus, 2f. *Zacynthus, 2. *Zoilus, 25, 36. *Zosippus, 24, 36 .

The figure following the name of the genu- indicates the number of the plate; new genera are preceded by an (*). Of the roon species recorded from Central America, 49 Pentatomidae, 29 Coreidae, 22 Lygaeidae, 7 Pyrrhocoridae, and 7 Capsidae, a total of Ift. are found in America north of Mexico.

NOTES ON BOMBYCID LARVAE.

BY HARRISON G, DYAR, NEW VURK。

Parorgyia leucomiaea abotand Smith. r797- Λ and S. Lep. ins. Ga. pl. 7 S . clintonii Grote and Robinson. tS66-G and R. Proc. ent. soc. Phil., vi, 3 ver. basieldya Packard.
186.-Pack., Proc, ent. soc. Plail., iii, 333. farea (berore last molt). Ilead shining back. Boly pale vellowish, variegated with
black; a black dorsal line, interrupted on the summit. of the posterior segment. Long silky white hairs, with a few black ones arise from the subventral warts. The lateral row (row iii) furnishes shorter bristly yellowish hatis; but on joints 2 and 13 gives a long pencil of black hairs A few black hairs also overhang the had and extend from joint 13 .

From the subdorsal warts on joints 2-4, S-1I and 13 arise tufts of plumed white hairs appearing "mouldy" on the ends, intermixed with bristly yellow hairs. On joints $5,6,7$ and 12 the warts of rows i and ii bear a series of large square black tufts, mixed with white plumed hairs especially at the sides of the tufts, where also a few bristly yellow hairs occur. The tuft on joint 7 is much less black than the others. Dorsally on joints 10 and II a median whitish retractile tubercle with flattened top.

Last stage.-Head black, whitish above the mouth. Body pale whitish with a yellowish tinge, sladed, marked diffusely with black; a dorsal and a stigmatal band indicated. Two long, black pencils of hairs on joints 2 and is as in the previous stage. Lateral hairs long, dirty whitish mixed with a few black ones. Dorsal tufts as before except that those on joints 5-8 are now large, square, brown ones, mixed at the sides with white plumed hairs; the tuft on joint iz still remaining black as previously and contrasting with the others.

Cocoon composed of hair and silk.
Mature larvae on IIfckory (Carya) at Rhinebeck, N. Y. June 6, I887 and young ones on oak (Quercus) Aug. 9, 1887. My description agrees approximately with Sinith and Abbot's figure; but this figure can hardly be very accurate as remarked by Prof. Riley (Proc. ent. soc. Wash. i, S8.). The brief description of the larva of "Parorgyia clintonil" by Mr. Coquillett (Can. ent. xii, 45) also agrees with my notes, except that the author remarks that the retractile tubercles are "reddish."
The moths bred from the larvae here described were of the form basiftaza Pack.

Parorgyid achatina Abbot and Smith.
1797-A and S. Lep. ins. Ga., ii, pl. 77. parallela Grote and Robinson.
1866-G. and R. Proc. ent. soc. Phil., vi, 5 . 1872-Lintner, 26 th rept. N. Y. state cab. n. hist. 129.

18S7-Seifert, Ent. amer. iii, 93
1890-Packard, $5^{\text {th }}$ rept. U. S. ent. comm. 135.
z'ar. obliquata Grote and Robinson.
I S66-G. and R. Proc. ent. soc. Plail., vi, 4.
According to the observations of Mr. Seifert, this larva has eight stages, while Dr. Packard.gives it but five.* Mr. Seifert's larvae did not hibernate, which is unusual for this latitude. I believe this species usuatly hibernates in the fourth and fifth larval stages.

Larza stage III. ${ }^{\circ}$ (?)-Head black, shining, mouth parts paler, sutures depressed: width 1. $3+\mathrm{mm}$. Body nearly black, a litule mottled with whitish at the sides. Subdorsal warts on joint 2 large, bearing a few planed black hairs. From warts i and ii on joints 5 and 12 arises a square black tuft of plumed hairs. The other warts bear pale, sordid, whitish hairs; but from warts i and ii on joints $6-8$

* Neither of these authors have given any meisure. ments of the width of head, which would have enabled me to compare the stages observed by me directly with their descriptions. They have given measurements of the length of the larva, data which seem to me very variable and unsatisfactory. Nevertheless, the measwrements of Mr. Seiferl follow a series in geometrical progression filirly well, and, to judge Dr. Packard's work by Mr. Seifert's, usingthe length of larva as means of comparison, I conclude that Dr. Packardhas failed to olserve stnges iv, vi and vii, as recorded by Mr. Seifert. Felow, I give, comparatively, a calculated series and the lengths of larva as found by these gentlemen.
Calculated series, ratio $7-10: 3.1,4.5,6.4,9.1,13.0$, $1 \$.6,26.6,39 \mathrm{~mm}$.

Mr. Seifert's mensurements: $3.9,5.1,6.5,9.0,13,19$ $25,26-3 \mathrm{Smm}$.

Dr. Packard's measurements: $2.5,4-5,7,-, 12-14,-$, -, 35 mm .
It seems evident that Dr. Packard must have missed at least one stage; for it is not possible to make his measurenaents fit a calculated series. However, such is the uncertainty of these measurements, that it can be done by supposing that the larvae have sometimes only six stages, and that Dr. Packard missed stage v;
e. gr.,

Calculated series, ratio $6-10: 2.7,4.5,7.6,13,21,35$ mm.

Dr. Paclsard's figures : $2.5,4.5,7,12-14,-, 35 \mathrm{~mm}$.
they are gray, forming slight dorsal tufts. On joints roand it a medio-dorsal whitish retractile tubercles.

Stage H^{r}. (?)-Width of head 1.65 mm . As before, but the hair pencils from joint 2 are more distinct and there is abundant gray hair from the dorsal warts of joints $3,4,6,7$ and S. Some larvae hibernate in this stage.

Stage $V^{\text {r. (}}$? - Head black, labrum and antennae whitish; width 2 mm . Dorsum covered by feathery gray hair: : but the whitish retractile tubercles are exposed. Black hair pencils on joint 2 and square tufts on joints 5 and 12 as before.

This is the hibernating stage.
Food plants.-Oak (Quercus), Ilickory (Carya) and wild cherry (Prunus serotina).

Parorgyin achatina larva differs from that of P. leucophaer in lacking the pair of black hair pencils which are present in the latter on joint 13 .

The synonymy given above for the two species of Parorygia is the same as that given by Dr. Packard (5th rept. U. S. ent. comm. pp. 13.5-13S) except that I regard obliquata as the form of achatina in which the longitudinal black bar is absent (see Seifert, Ent. Amer. iii, $9^{(6)}$ and not as a synonym of leucophaca. Further, I regard P. cinnamomea G. and R. and P. plagiata Walk. as distinct species. In confirmation of this view, I have found a single larya on the hophornbeam in Ulster Co., N. Y., June S, IS87, which differed from hoth those described above. It had two pair of black pencils and four tufts mixed with very feathery white hairu besides eight smaller dorsal tufts and a series of small lateral pencils. The retractile tubercles were red. Head black, body whitihh, hair whitish gray. I was unable to obtain at moth from the laren, and have not met with it since. it seems likely that it may have been Parorgyia cimamomea.

Lebena ovilla Grote.

I bave observed two stages previous to the last one which has been described by Dr.

Packard (American Naturalist, xviii, $72(3)$. In these stages the larva is largely green and rests on the back of a leaf; in the last stage it is gray and hides by day in crevices in the bark. Its colors are well adapted to the smrroundings which its liabits lead it to choose at different periods of its life.

Stage $/ 1$. (?)-Head pale yellowinh, mouth darker; width $0 .+5 \mathrm{~mm}$. loody light green, the wart i on joint 7 blackish brown with al small brown dorsal patch and faint, broad. greenish white dorsal band. Other warts pale; hairs mostly pale, a few stiff, dark ones. Length of larya about +mm .

Stage $H I$. - Much the same. Width of head 0.60 mm .

Stage IV. (?)-Width of head 0.85 mm . Much as in the mext stage, though still largely green. Markings brownish, clonded ; dorsal line scarcely continuous. Warts pale, except wart i on joint 7 which is black.

Stage VI. ? (Last stage).-Head slighty. bilobed, about as wide as high. full, well rownded; ground color white, shining. marked with dense black inottlings, forming a black patch over the vertex of each lobe, and largely covering the clypeus, leaving the sutures white; width 1.5 mm . Body flattened, projecting subventrally, abdominal feet present on joints $S-10$ and 13 only. Three rows of warts on every joint. row i subdorsal, central; ii superstigmatal, anterior; jii substigmatal on a projecting hase and iv smaller, on joints 3^{-11} subventrally. Hair fine, radiating, not abundant, but thickest and longest from the warts of row iii. Color sordid white with a black dorsal line and several mregular and confuned, crinkled, blackish lines along the sides. giving a dark gray appearance. On joints 2-4, 7 and $11-12$ the dark color predominates dorsally, forming diffuse, clouded patcher. through which the dorsal line is less di-tinctly defined by white than elsewhere Thoracic feet brownish. Warts all pale, some of row i tinged with black. Hair black and white mixed. Venter sordid white.

Cocoon.-Composed of little bits of leaf or other material. The larva builds up two parallel walls and unites them at the top. Cocoon elliptical, flat at base, size $7 \times 2 \frac{1}{2} \mathrm{~mm}$. The anterior end is a little higher and more pointed than the posterior.

Larvae on Quercus macrocarpa at Plattsburgh, N. Y.

ENTOOMOLOGICAL NOTES.

A recent number of the Proc. Boston soc. nat. hist. contains a critical study and revision of the New England species of Spharagemon by Mr. A. P. Morse. The article is based on a large amount of material for the most part personally collected in various parts of the territory considered and upon examination of the type specimens whenever practicable, and is illustrated with drawings of the principal structural characteristics presented by several species of the genus. Three species are recognized as occurring in New England; another from Staten ld. will probably be found in Connecticut. The latter is described as new (S. oculatum) and has probably been confused with S. col-

Fig. 1, 2, 3, S. aequale scmiteri. Fig. 4, 5, S. sa.*atile. Fig. 6, 7, S. bolli. Fig. S, S. ocrdatum. Fig. 9, S. collare 2 diameters.
lare. Of the former, one (S. saxatile) is new, laving been hitherto confused with the remaining two (S. aequale and bolli). S. balteatum is reduced to a synonym, and the New England form of aequale is further distinguished by a trinomial (scudderi) for reasons which our space withholds. The cut, on a smaller scale, and its explanation are given herewith.

We are glad to commend and call the attention of entomologists to the author's practice of examining an abundance of material and distributing examples as one likely to materially advance the science by reducing errors and synonyms to a minimum.

The death is announced of Edward Norton at the age of 70 , at his home in Farmington, Conn. Mr. Notton was one of the first naturalists of this country to devote himself to the exclusive study of a single family of Hymenoptera, choosing the Tenthredinidae. It is many years, however, since he took an active part in entomological pursuits. It may not be known to many that he is said to have been the first importer of Guernsey cattle to this country and that he established the first creamery in New England.

In an extended notice of the first volume of Kolbe's new Introduction to Entomology in a recent number of the Entomologische nach. richten, Verhoeff declares it to be for entomologists the most important literary work of the last decade.

Under the insufficient and over modest title "On certain grass-eating insects," Mr. E. P. Felt of Comell University publishes a synopsis of the species of Crambus found about Ithaca, N. Y., treating the subject both systematically and economically, with exceptionally full accounts of the life histories of those little known moths and abundant and rery varied illustrations. 26 species are included. It is an excellent exposition of the Cornell method.

Mr. C. H. Tyler Townsend has again changed his address to Las Cruces, N. Mex.

